78 research outputs found

    Glass formation and properties of Ge-Ga-Te-ZnI2 far infrared chalcohalide glasses

    No full text
    International audienceIn order to develop novel far infrared window material, a series of Ge-Ga-Te-ZnI2 chalcohalide glasses were prepared by traditional melt-quenching method and their glass-forming region was determined also. Here, some measurements including X-ray diffraction (XRD), differential thermal analysis (DTA), UV-Vis-NIR absorption spectrum, and infrared optical transmission spectra were carried out. The allowed indirect transition optical band gap was calculated according to the classical Tauc equation. The results show that with the addition of ZnI2, the glass-forming ability and thermal stability are improved gradually. With the contents of ZnI2 increased from 5 to 20 at.%, continued blue-shifting occurs in the cutting-off absorption edge of short-wavelength and the values of indirect optical band gaps were observed with ranges from 0.596 to 0.626 eV in these glasses. These GeTe4.3-GaTe3-ZnI2 glasses show wide optical transmission and the infrared cut-off wavelengths are larger than 25 ÎŒm, which implies that the Ge-Ga-Te-ZnI2 chalcogenide glasses possess the potential of far-IR optical window applications

    Te-based chalcogenide films with high thermal stability for phase change memory

    No full text
    This study reports on the synthesis of tellurium-based chalcogenide films that have high thermal stability for phase change memory application. Several Te-based chalcogenide alloys of In-Bi-Te, Ag-Bi-Te, In-Sb-Te, Sn-Sb-Te, Zn-Ge-Te, and Ga-Ge-Te are reported. Their thermal, optical, and electrical properties are investigated. The results show that Bi-Te-based films have a higher crystallization temperature and greater activation energy compared with the other Sb-Te-based and Ge-Te-based films. Especially, In₂.₈Bi₃₆.₆Te₆₀.₆film exhibits high crystallization temperature (252 °C) and great activation energy (5.16 eV), showing much improved amorphous thermal stability. A relatively wider optical band gap (0.674 eV) of thermal annealed In₂.₈Bi₃₆.₆Te₆₀.₆film is obtained. In addition, it also has a higher amorphous/crystalline resistance ratio of about 10⁔, implying that current consumption could be low in the phase-change memory operation.This work was financially supported by the Natural Science Foundation of China (Grant Nos. 61008041, 61107047, and 60978058), the Natural Science Foundation of Zhejiang Province, China (Grant No. Y1090996), the Natural Science Foundation of Ningbo City, China (Grant No. 2011A610092), the Ningbo optoelectronic materials and devices creative team (Grant No. 2009B21007), the Open Research Fund of State Key Laboratory of Transient Optics and Photonics, Chinese Academy of Sciences (Grant No. SKLST201010), and sponsored by K. C. Wong Magna Fund in Ningbo University

    Preparation of Low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications

    No full text
    International audienceGe15Ga10Te75 (GGT) glass shows good transparency between 2 and 25 Όm wavelengths, good chemical and thermal stability to be drawn into fiber, which appears to be a good candidate for developing far-IR fiber-optics devices, although there are strong absorption peaks caused by impurities in the glass. With the aim of decreasing the content of impurities and micro-crystal particles in prepared \GGT\ glass samples, a rapid heating furnace and the fast distillation method based on vapor evaporation plus deposition under vacuum condition was adopted. Properties measurements including Differential Scanning Calorimeter (DSC), Vis-NIR and \IR\ transmitting spectra were performed on the prepared glass samples. Dependence of optical loss on the types of oxygenic getters and their contents and glass quenching temperature was also studied. All these results show that the average optical losses of distilled glass samples were greatly improved by the designated purification processes. Besides, the quality of the glass samples can be improved with the optimized quenching temperature. In all, the optical loss of the glass can be reduced effectively. Minimum optical losses of 0.042 dB/mm at 9 Όm and 0.037 dB/mm at 12 Όm are obtained after a right purification process, which are the lowest loss of the \GGT\ chalcogenide glass nowadays

    Freely adjusted properties in Ge–S based chalcogenide glasses with iodine incorporation

    No full text
    International audienceIn this study, we examined the function of halogen iodine acting as a glass network modifier in green chalcogenide glasses based on the Ge–S system. We obtained a series of Ge–S–I glasses and determined their glass-forming region. We then recorded the physical, thermal, and optical properties and studied the effect of halogen iodine on Ge–S–I glasses. Results show that these glasses have relatively wide optical transmission window for infrared (IR) applications. The softening temperature of Ge–S–I glasses varies from 210.54 °C to 321.63 °C, this temperature fits well with some kinds of high-temperature polymers, such as PES and PEI, the polymers serve as protective layers with high strength and flexibility, thus simplifying the fabrication processes of IR chalcogenide glass fiber. Finally, we performed a purification process to eliminate impurities and to improve optical spectr

    Novel Ge–Ga–Te–CsBr Glass System with Ultrahigh Resolvability of Halide

    No full text
    International audienceCO2 molecule, one of the main molecules to create new life, should be probed accurately to detect the existence of life in exoplanets. The primary signature of CO2 molecule is approximately 15 ÎŒm, and traditional S- and Se-based glass fibers are unsuitable. Thus, Te-based glass is the only ideal candidate glass for far-infrared detection. In this study, a new kind of Te-based chalcohalide glass system was discovered with relatively stable and large optical band gap. A traditional melt-quenching method was adopted to prepare a series of (Ge15Ga10Te75)100-x (CsBr)x chalcogenide glass samples. Experiment results indicate that the glass-forming ability and thermal properties of glass samples were improved when CsBr was added in the host of Ge–Ga–Te glass. Ge–Ga–Te glass could remarkably dissolve CsBr content as much as 85 at.%, which is the highest halide content in all reports for Te-based chalcohalide glasses. Moreover, ΔT values of these glass samples were all above 100 °C. The glass sample (Ge15Ga10Te75)65 (CsBr)35 with ΔT of 119 °C was the largest, which was 7 °C larger than that of Ge15Ga10Te75 host glass. The infrared transmission spectra of these glasses show that the far-infrared cut-off wavelengths of (Ge15Ga10Te75)100-x (CsBr)x chalcogenide glasses were all beyond 25 ÎŒm. In conclusion, (Ge15Ga10Te75)100-x (CsBr)x chalcogenide glasses are potential materials for far-infrared optical applicatio

    Improvements on the optical properties of Ge-Sb-Se chalcogenide glasses with iodine incorporation

    No full text
    International audienceDecreasing glass network defects and improving optical transmittance are essential work for material researchers. We studied the function of halogen iodine (I) acting as a glass network modifier in Ge–Sb–Se–based chalcogenide glass system. A systematic series of Ge20Sb5Se75-xIx (x = 0, 5, 10, 15, 20 at%) infrared (IR) chalcohalide glasses were investigated to decrease the weak absorption tail (WAT) and improve the mid-IR transparency. The mechanisms of the halogen I affecting the physical, thermal, and optical properties of Se-based chalcogenide glasses were reported. The structural evolutions of these glasses were also revealed by Raman spectroscopy and camera imaging. The progressive substitution of I for Se increased the optical bandgap. The WAT and scatting loss significantly decreased corresponding to the progressive decrease in structural defects caused by dangling bands and structure defects in the original Ge20Sb5Se75 glass. The achieved maximum IR transparency of Ge–Sb–Se–I glasses can reach up to 80% with an effective transmission window between 0.94 ÎŒm to 17 ÎŒm, whereas the absorption coefficient decreased to 0.029 cm-1 at 10.16 ÎŒm. Thus, these materials are promising candidates for developing low-loss IR fibers

    Novel NaI improved Ge–Ga–Te far-infrared chalcogenide glasses

    No full text
    International audienceIn this study, a novel Te-based glass system was investigated. Some properties of Ge–Ga–Te–NaI chalcogenide glasses such as physical, thermal and optical transmitting were discussed. XRD patterns show this glass system with best amorphous state can dissolve content of NaI as much as 35 at.%. The lowest cut-off wavelength of glass samples is 1645 nm which is the smallest wavelength among the reported Te-based glasses doping with halide. DSC curves indicate that all glass samples have good thermal stabilities (ΔT > 100 °C) and the highest ΔT value corresponding to (Ge15Ga10Te75)85(NaI)15 glass is 120 °C which is 8 °C greater than that of Ge–Ga–Te host glass. The infrared spectra manifest Ge–Ga–Te–NaI chalcogenide glass system has a wide infrared transmission window between 1.6 ÎŒm and 20 ÎŒm. Consequently, Ge–Ga–Te–NaI glasses can be a candidate material for far infrared optic imaging and bio-sensing application

    Fabrication and characterization of Ge–Sb–Se–I glasses and fibers

    No full text
    International audienceChalcogenide glasses of the Ge20Sb5Se75−x I x (x = 0, 5, 10, 15, 20 at.%) system were prepared. This study was performed to examine some Ge–Sb–Se–I glass physical and optical properties, the structural evolution of the glass network, and the optical properties of the infrared glass fibers based on our previous studies. The variation process of the glass physical properties, such as transition temperature, glass density, and refractive index, was investigated from the glass of Ge20Sb5Se75 to the Ge20Sb5Se75−x I x glass series. The structural evolutions of these glasses were examined by Raman spectroscopy. The Ge20Sb5Se55I20 composition was selected for the preparation of the IR fiber. The Ge20Sb5Se55I20 glass was purified through distillation, and the intensity of the impurity absorption peaks caused by Ge–O, H2O, and Se–H was reduced or eliminated in the purified glasses. Then, Ge20Sb5Se55I20 chalcogenide glass fiber for mid-infrared transmission was fabricated using high-purity materials. The transmission loss of the Ge20Sb5Se55I20 fiber was greatly reduced compared with that of the Ge20Sb5Se75 glass fiber. The lowest losses obtained were 3.5 dB/m at 3.3 ÎŒm for Ge20Sb5Se75I20 fiber, which was remarkably improved compared with 48 dB/m of the unpurified Ge20Sb5Se75 fiber

    Arsenic Sulfide Suspended-core Fiber Simulation with Three Parabolic Air Holes for Supercontinuum Generation

    No full text
    Highly nonlinear suspended-core fibers (SCFs) with tunable dispersion have attracted much attention in the fields of Raman amplification, optical frequency combs, broadband and flat supercontinuum generation (SCG). To address the limitation of applications due to its fragile suspension arms, this study proposes the design of a fiber structure with three parabolic air holes. Numerical simulations are performed to optimize an arsenic sulfide SCF in terms of dispersion management and SCG in the wavelength range from 0.6 µm to 11.6 µm. Results show that the proposed SCF has dual zero-dispersion wavelengths (ZDWs) that can be shifted by adjusting the parabolic coefficient of the air-hole and the equivalent diameter of the suspended core. By means of structural optimization, an SCF with 1 μm equivalent diameter and a parabolic coefficient of 0.18 μm−1 is proposed. The first ZDW of the SCF is blue-shifted to 1.541 μm, which makes it possible to use a commercial light source with a cheaper price, more mature technology and smaller volume as the pump source. SCG is studied by solving the generalized nonlinear Schrödinger equation using the split-step Fourier method, and a 0.6–5.0 μm supercontinuum spectrum is obtained at a pump source peak power of 40 kW

    Fabrication And Optical Properties Of Chalcogenide As2S3 Suspended-Core Fiber

    No full text
    The chalcogenide glasses are considered as a kind of good candidate for their characteristics of higher linearity and nonlinearity. Compared to common silica fibers and step-index chalcogenide glasses fibers, chalcogenide suspended-core fibers have better qualities in wider infrared transmitting, ultra-higher nonlinearity functioning and dispersion tailoring, so that it can be used in infrared laser spectrum broaden, chemical and biologic sensing popularly. First, the reviews are given for the developments of chalcogenide glasses fiber and laser supercontinuum generation; then, a few meters of four-hole suspended-core fibers are fabricated by a novel extrusion method which need only purified bulk chalcogenide glass for preparation. Here, the glasses thermal stability and tailored fibers geometry can be protected finely thanks to the novel extrusion method. In addition, the optical properties of glasses and fibers also are measured detailedly. With the help of optical spectra analysis, the visible and infrared transmitting of As2S3 samples, optical loss spectrum and light transmission spot diagrams in the fibers are discussed, respectively. A low-loss (0.17 dB/m at a wavelength of 3.8 ÎŒm) chalcogenide suspended-core fiber with a core diameter of 5.6 ÎŒm is obtained, and their supercontinuum generations are achieved under the pump of infrared optical parametric amplification (OPA) laser, the widest broadened spectrum in infrared region can be achieved up to 3000 nm (from 1500 to 4500 nm), and the value can be increased up to 6000 nm in theory with a more widen spectroscopic detector
    • 

    corecore